Calculating $\mathbf{p H}$

To calculate the pH of an aqueous solution you need to know the concentration of the hydronium ion in moles per liter (molarity). The pH is then calculated using the expression:

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] .
$$

Example: Find the pH of a 0.0025 M HCl solution. The HCl is a strong acid and is 100% ionized in water. The hydronium ion concentration is 0.0025 M . Thus:

$$
\mathrm{pH}=-\log (0.0025)=-(-2.60)=2.60
$$

Calculating the Hydronium Ion Concentration from pH

The hydronium ion concentration can be found from the pH by the reverse of the mathematical operation employed to find the pH .

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}} \text { or }\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})
$$

Example: What is the hydronium ion concentration in a solution that has a pH of 8.34 ?

$$
\begin{gathered}
8.34=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
-8.34=\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-8.34}=4.57 \times 10^{-9} \mathrm{M}}
\end{gathered}
$$

On a calculator, calculate $10^{-8.34}$, or "inverse" $\log (-8.34)$.

Calculating pOH

To calculate the pOH of a solution you need to know the concentration of the hydroxide ion in moles per liter (molarity). The pOH is then calculated using the expression:

$$
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]
$$

Example: What is the pOH of a solution that has a hydroxide ion concentration of $4.82 \times 10^{-}$ ${ }^{5} \mathrm{M}$?

$$
\mathrm{pOH}=-\log \left[4.82 \times 10^{-5}\right]=-(-4.32)=4.32
$$

Calculating the Hydroxide Ion Concentration from pOH

The hydroxide ion concentration can be found from the pOH by the reverse mathematical operation employed to find the pOH .

$$
\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}} \text { or }\left[\mathrm{OH}^{-}\right]=\operatorname{antilog}(-\mathrm{pOH})
$$

Example: What is the hydroxide ion concentration in a solution that has a pOH of 5.70?

$$
\begin{gathered}
5.70=-\log \left[\mathrm{OH}^{-}\right] \\
-5.70=\log \left[\mathrm{OH}^{-}\right] \\
{\left[\mathrm{OH}^{-}\right]=10^{-5.70}=2.00 \times 10^{-6} \mathrm{M}}
\end{gathered}
$$

On a calculator calculate $10^{-5.70}$, or "inverse" $\log (-5.70)$.

Relationship Between pH and pOH

The pH and pOH of a water solution at $25^{\circ} \mathrm{C}$ are related by the following equation.

$$
\mathrm{pH}+\mathrm{pOH}=14
$$

If either the pH or the pOH of a solution is known, the other can be quickly calculated.
Example: A solution has a pOH of 11.76 . What is the pH of this solution?

$$
\mathrm{pH}=14-\mathrm{pOH}=14-11.76=2.24
$$

